Jamie Hale

Jamie Hale

Friday, December 25, 2015

Confused About Critical Thinking?



Educators often pay lip service to the idea of teaching “critical thinking”.  But, when asked to define “critical thinking” answers are often weak and sometimes so ambiguous they are virtually worthless.  Common responses to the defining  critical thinking questions include, “teaching them how to think”, “teaching them formal logic”, or “teaching them how to solve problems.”   They already know how to think, logic is only a portion of what is needed to increase critical thinking, and teaching them how to solve problems is an ambiguous answer that is context specific.  Stanovich argues, “that the super-ordinate goal we are actually trying to foster is that of rationality” (Stanovich, 2010, p.198). Ultimately, educators are concerned with rational thought in both the epistemic sense and the practical sense.  Certain thinking dispositions are valued because they help us base our beliefs on available evidence and assist us in achieving our goals. Many educators express to students and administrators the importance of critical thinking, yet, many of those expressing the importance of critical thinking don't know what critical thinking encompasses.  In fact, many educators are simply in the business of repeating what others say-Critical thinking is important.  Critical thinking, as promoted by educators, is often and appendage used to increase the value of intellectual status, or used to indicate this course is different.   

Understanding Rationality

Rationality is concerned with two key things: what is true and what to do (Manktelow, 2004).  In order for our beliefs to be rational they must be in agreement with evidence.  In order for our actions to be rational they must be conducive to obtaining our goals. 

Cognitive scientists generally identify two types of rationality: instrumental and epistemic (Stanovich, 2009). Instrumental rationality can be defined as adopting appropriate goals, and behaving in a manner that optimizes one's ability to achieve goals. Epistemic rationality can be defined as holding beliefs that are commensurate with available evidence. This type of rationality is concerned with how well our beliefs map onto the structure of the world. Epistemic rationality is sometimes called evidential rationality or theoretical rationality. Instrumental and epistemic rationality are related.  In order to optimize rationality one needs adequate knowledge in the domains of logic, scientific thinking, and probabilistic thinking.   A wide variety of cognitive skills fall within these broad domains of knowledge.  Components of critical thinking have been operationalized in a wide range of studies.  

Critical thinking can and has been measured.  CT is something much more than the over conceptualized ambiguous definitions often provided by educators and others (evidence based practitioners, science writers, skeptics, and so on...)  perpetuating the importance of critical thinking. 

Tasks on a critical thinking test include (Hale, 2012):

Answer the following:

John is looking at Cindy but Cindy is looking at James. John is married but James is not.
Is a married person looking at an unmarried person?
A) Yes   B) No   C) Cannot be determined

Does a conclusion follow logically from the two premises?

Premise 1: All living things need food
Premise 2: Animals need food
Conclusion: Animals are living things
A) Yes B) No

Read and answer the following:

A suit and tie cost $120 in total. The suit costs $100 more than the tie.
How much does the tie cost?     

In order for educators to successfully teach critical thinking / rational thinking it is imperative that they understand what critical thinking actually is and why it matters.  What are the goals of critical thinking?  How can critical thinking be assessed?  Does my curriculum contain information regarding scientific reasoning, logic, heuristic processing and probabilistic thinking? 

Critical thinking is about what is true (epistemic rationality) and what to do (instrumental rationality).  The best tip I can provide regarding critical thinking is to educate yourself on the works of the most influential people in the field of critical thinking.  A few of those people  include: Keith Stanovich, Daniel Kahneman, Richard West, Shane Frederick and Jonathan Baron. 

Rationality vs. Intelligence

 Rational thinking skills are as important as intelligence.  Intelligence and rationality are often dissociated. Research demonstrates that intelligence is often a weak predictor of rationality.  This has been shown over a wide range of studies.  Intelligence is important, but there is more to good thinking than intelligence.  Intelligence reflects reasoning abilities across a wide variety of domains particularly novel ones.  In addition, intelligence reflects general declarative knowledge acquired through acculturated learning.  Rationality reflects appropriate goal setting, goal optimization, and holding evidence-based beliefs.

Chapter 2 in my book - In Evidence We Trust- provides information on the science of critical thinking / rational thinking.  

References are available upon request. 

Wednesday, July 1, 2015

Exercise Does The Brain Good!


Exercise may lead to a wide range of benefits- increased cardiovascular health, stronger bones and muscles, stronger connective tissue, and increased overall fitness and athleticism.  There is a plethora of evidence that shows exercise is beneficial to the brain (Fernandez et al., 2013).  Research using various methods from a variety of domains supports the finding.  

A recent study, conducted in the Netherlands, found evidence that people who utilized an exercise bike for 6 months experienced an increased connectivity and density in their brain’s white matter. This was seen in people with schizophrenia and people with no clinical diagnosis (Svatkova et al., 2015)  Abstract 

Another study, conducted in Taiwan, found that people with diabetes or metabolic syndrome who utilized a stationary bike for 12 weeks showed an increase in brain-derived neurotrophic factor (BDNF), a growth factor involved in supporting neural plasticity processes- growth and differentiation of new neurons and neuron connections (Tsai et al., 2015) Abstract 


Why do fitness professionals fail to mention that exercise benefits the brain? There are probably three primary reasons for this. First, they are not familiar with the research, which is usually conducted in the field of brain science, as opposed to exercise science. Second, the subject matter can be intimidating – the brain is arguably the most complex structure in existence. Third, they have minimal knowledge of the brain and brain processes, thus they would rather not discuss the topic (brain is often the domain of cognitive, behavioral and neuroscientists).

Some of the key mechanisms mediating the effects of exercise on the brain:

Neurogenesis
Synaptic plasticity Angiogenesis & vascular growth factors
Neurotransmitters & growth factors.
Synaptic plasticity
Spine density

In my seminar -Your Brain & Exercise- these mechanisms are discussed in detail.  Other topics discussed: why health pros fail to mention brain benefits of exercise, physical activity and school curriculum, exercise and Parkinson’s, depression, stroke, neuroplasticity demystified, what type of exercise (aerobic vs. anaerobic), exercise recommendations for brain health, future research directions, etc. 


In conclusion, exercise offers an array of benefits.  Brain health is imperative to overall health.  The brain is part of the body, and should be referred as so.  Discard use of the phrases “brain and body” and “mental and physical.” The brain is part of the body, and all mental processes emanate from a physical structure: the brain.  

Further Reading: 

Exercise and The Brain   

 Your Brain on Exercise


Exercise Benefits Individuals with Parkinson’s Disease 


Online Store

  

 

Tuesday, February 24, 2015

It's Only a Theory??

“It’s only a theory” is a phrase often used to suggest that the theory in question is weak.  This phrase is often used as a response to a theory that one doesn’t agree with or understand.  It is imperative to recognize that theory in science is drastically different than the type of theory discussed in everyday conversation.  In science, theory represents a body of knowledge that offers an explanation for converging lines of evidence. Science needs theory!   Lay person theory (everyday theory) reflects speculation or a guess directed at explaining phenomena. 
  
“Theory: In science, a well-substantiated explanation of some aspect of the natural world that can incorporate facts, laws, inferences, and tested hypotheses.”  National Center for Science Education

“The formal scientific definition of theory is quite different from the everyday meaning of the word. It refers to a comprehensive explanation of some aspect of nature that is supported by a vast body of evidence.” National Academy of Sciences

When juxtaposing lay theory and scientific theory it is evident that they are very different.  “It’s only a theory” is a powerful statement in the context of science, as theory represents a high status on the ladder of explanation.  It is probably a good idea to abandon the phrase “It’s only a theory” when discussing theories in science. The type of statement is more appropriately directed at lay person theory.

Modern civilization is largely dependent on science and technology.  Most people would agree, most of the time.  That is, until science repudiates cherished beliefs.  Scientific processes are unquestionably the most powerful we have for uncovering reality.  Of course, scientific processes demonstrate weaknesses, but they are the best we have for understanding the universe.
 
Understanding and appreciating the full implications of science, requires, at least, a basic knowledge of the history of science, philosophy of science and matters of scientific literacy.  In addition, an understanding of research methodology and statistics will be beneficial in regards to:

Reading scientific journals

Distinguishing science from pseudoscience (in popular science articles)

Protection from quacks

Being a better thinker

Being an independent consumer of research information (you can decide the credibility of the information)

Being a consistent scientific thinker (applying principles of scientific thinking to all contexts)

To learn more about scientific thinking refer to In Evidence We Trust: The Need for ScienceRationality and Statistics